其中
summary.image生成新的图像用于验证输入结果的准确与否
summary.scalar用于记录准确率、损失等信息
得到的结果需要进行 merged = tf.summary.merge_all()
最后要sess.run([train_step,merged])
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
max_steps = 1000
learning_rate = 0.001
dropout = 0.9
data_dir = ""
log_dir = "C:/Users/dongfanker/Desktop/log"
mnist = input_data.read_data_sets(data_dir, one_hot=True)
sess = tf.InteractiveSession()
with tf.name_scope("input"):
x = tf.placeholder(tf.float32, [None, 784], name="x-input")
y_ = tf.placeholder(tf.float32, [None, 10], name="y-input")
with tf.name_scope("input_reshape"):
image_shaped_input = tf.reshape(x, [-1, 28, 28, 1])
tf.summary.image("input", image_shaped_input, 10)
# 创建初始化参数的方法
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def variable_summaries(var):
with tf.name_scope("summaries"):
mean = tf.reduce_mean(var)
tf.summary.scalar("mean", mean)
with tf.name_scope("stddev"):
stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
tf.summary.scalar("stddev", stddev)
tf.summary.scalar("stddev", stddev)
tf.summary.scalar("max", tf.reduce_max(var))
tf.summary.scalar("min", tf.reduce_min(var))
tf.summary.histogram("histogram", var)
def nn_layer(input_tensor, input_dim, output_dim, layer_name, act=tf.nn.relu):
with tf.name_scope(layer_name):
with tf.name_scope("weights"):
weights = weight_variable([input_dim, output_dim])
variable_summaries(weights)
with tf.name_scope("biases"):
biases = bias_variable([output_dim])
variable_summaries(biases)
with tf.name_scope("linear_compute"):
preactivate = tf.matmul(input_tensor, weights) + biases
tf.summary.histogram("pre_activation", preactivate)
activations = act(preactivate, name="activation")
tf.summary.histogram("activation", activations)
return activations
hidden1 = nn_layer(x, 784, 500, "layer1")
with tf.name_scope("dropout"):
keep_prob = tf.placeholder(tf.float32)
tf.summary.scalar("dropout_keep_probability", keep_prob)
dropped = tf.nn.dropout(hidden1, keep_prob)
y = nn_layer(dropped, 500, 10, "layer2", act=tf.identity)
with tf.name_scope("cross_entropy"):
diff = tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y)
with tf.name_scope("total"):
cross_entropy = tf.reduce_mean(diff)
tf.summary.scalar("loss", cross_entropy)
with tf.name_scope("train"):
train_step = tf.train.AdamOptimizer(learning_rate).minimize(cross_entropy)
with tf.name_scope("accuracy"):
with tf.name_scope("correct_prediction"):
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
with tf.name_scope("accuracy"):
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
tf.summary.scalar("accuracy", accuracy)
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter(log_dir + "/train", sess.graph)
test_writer = tf.summary.FileWriter(log_dir + "/test")
tf.global_variables_initializer().run()
def feed_dict(train):
if train:
xs, ys = mnist.train.next_batch(100)
k = dropout
else:
xs, ys = mnist.test.images, mnist.test.labels
k = 1.0
return {x: xs, y_: ys, keep_prob: k}
saver = tf.train.Saver()
for i in range(max_steps):
if i % 10 == 0:
summary, acc = sess.run([merged, accuracy], feed_dict=feed_dict(False))
test_writer.add_summary(summary, i)
print("Accuracy at step %s: %s" % (i, acc))
else:
if i % 100 == 99:
run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
run_metadata = tf.RunMetadata()
summary, _ = sess.run([merged, train_step],
feed_dict=feed_dict(True),
options=run_options,
run_metadata=run_metadata)
train_writer.add_run_metadata(run_metadata, "step%03d" % i)
train_writer.add_summary(summary, i)
saver.save(sess, log_dir + "/model.ckpt", i)
print("Adding run metadata for ", i)
else:
summary, _ = sess.run([merged, train_step],
feed_dict=feed_dict(True))
train_writer.add_summary(summary, i)
train_writer.close()
test_writer.close()